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Abstract. This paper discusses the common origin of l/f noise in the power spectrum of 
random walks in a random environment and the l/E-like spectral anomaly for tight-binding 
electronic systems with off-diagonal disorder. In one dimension the existence of the Dyson 
singularity, (p (E) )  E lln-31EI l/iEI, for the density of states of the random chain as IEl+ 0 
is inevitably linked to Sinai ultraslow diffusion with the law (x2( t ) )  a ln4t as t + 0 and the 
presence of S(f) E In4f/fpower spectral density for small frequenciesf. Different forms of 
power-law singularities are expected instead for a correlated disorder model appropriate to 
describe random symmetric diffusion and magnon or phonon excitations. The two problems 
are discussed in terms of the averaged moments of the electronic wavefunction. The 1/E 
behaviour is shown to rely on the underlying very general validity of the log-normal dis- 
tribution for strongly disordered electronic systems. Analytical arguments are given and 
numerical evidence reported for the asymptotic presence of these singularities in the dimen- 
sions d = 2,3 when the disorder is sufficiently strong. 

1. Introduction 

Much work has been devoted to the study of quantum transport in disordered systems 
in connection with the phenomenon of Anderson localisation [l]. The related subject 
of classical excitation dynamics which is concerned with wave propagation (classical 
diffusion, magnons, phonons) in random media has also received much attention. In 
fact, the existence of long-time classical diffusion and the presence of extended long- 
wavelength Goldstone modes in random magnets seems to contradict the well known 
statements about the absence of quantum diffusion in random chains [2]. An answer to 
this problem has already been given in [3] where it is pointed out that the classical 
problem can be mapped exactly onto a quantum electronic model realised within a tight- 
binding Hamiltonian with off-diagonal disorder. The symmetric classical diffusion maps 
onto a chain with a particular form of correlated off-diagonal disorder where the random 
bonds occur in pairs. In this case the known rules about the absence of extended states 
in one dimension in the presence of a random potential do not apply. The electronic 
structure near the band centre becomes indistinguishable from that of a pure chain and 
extended states appear as IEl+ 0 in accordance with the presence of normal diffusion 
at long times. A distinctly different behaviour is expected for classical diffusion with 
asymmetric hopping rates in a random environment, which has also been studied. In the 
marginally asymmetric case a model known as random-random walk can be defined by 
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a stochastic equation with an additional randomly distributed time-independent drift 
force [4]. The dynamics is drastically different from normal diffusion. It is dominated 
by untypically long times taken by the particle to cross ‘mountains’ and the diffusion 
becomes logarithmically slow at long times as has been proved by Sinai [SI. Moreover, the 
power spectral density for the distance autocorrelation function exhibits llfbehaviour at 
small frequencies, f, a phenomenon known as l/f noise [6]. The corresponding one- 
dimensional quantum problem is the Anderson tight-binding Hamiltonian with off- 
diagonal (non-correlated) disorder and the Dyson 1/lEl singularity, within logarithmic 
corrections, is expected to occur near the band centre. The average localisation length 
also diverges logarithmically at this energy but the E = 0 state is localised in contrast to 
the long-wavelength magnon states. The purpose of this paper is to discuss the quantum 
disordered problem bearing in mind the results for its classical analogue. In fact, the 
Dyson singularity will be connected with the presence of l/f noise and the results 
extended to the quantum problem in higher dimensions. On the basis of a qualitative 
theory the presence of the Dyson singularity is shown in any dimension only when 
the disorder is sufficiently strong. Numerical simulation results, via two methods, are 
presented which tend to favour this conclusion. 

The llfnoise or flicker noise is a very common phenomenon in many areas of physics 
[6]. It has been observed in many other situations as well, such as fluctuations in oceanic 
currents, loudness of music, etc. Due to its appearance in so many conceptually different 
cases it is believed that there is no unique theoretical explanation. The majority of the 
proposed mechanisms of explanation agree that it is an equilibrium phenomenon [7], a 
belief which does not contradict the experiments. It has further been suggested [7] that 
in order to achieve an explanation two ingredients are required: a power-law form for 
the spectral correlation functions and the presence of self-similarity. Our case falls under 
the statement that disorder is a general mechanism responsible for the phenomenon [4]. 
The random ensemble under study has many untypical configurations which eventually 
dominate over the calculated mean values. From a mathematical point of view the 
random process is often expressed as a product of many random variables and the 
log-normal distribution law is recovered. It can easily be shown that the log-normal 
distribution with a sufficiently large variance generates l/f noise for a range of fre- 
quencies f depending on the magnitude of the variance. Log-normal distributions are 
believed to describe the sample-to-sample fluctuations of many local quantities (current, 
wavefunction amplitude, etc) in strongly disordered electronic systems. In fact recent 
results [8] obtained from the non-linear sigma in the 2 + E dimensions model indicate 
the asymptotic presence of the log-normal distribution in the localised regime in any 
dimension. It was argued that the distributions should have instead only log-normal 
tails in the metallic regime. In the latter case the variance of the conductance appears as 
a universal number. In [9] a one-dimensional model is introduced to study the energy 
width distributions for the localised states. Subsequently the occupation fluctuation 
spectrum is deduced and the llfnoise discussed [ 101, The logarithmic classical diffusion 
has been connected to the low-energy properties of a quantum model before [ l l ] .  In 
this paper an alternative viewpoint is presented to discuss the llfnoise in insulators. It 
is the log-normal distribution which is important and the off-diagonal disorder allows 
the phenomenon to manifest itself. In one dimension the mapping of the quantum 
problem to the classical diffusion model makes the display of llfnoise in the form of a 
Dyson singularity unambiguous. Moreover, our numerical results for higher dimensions 
may be viewed as a confirmation for the use of a one-dimensional model [9], asymp- 
totically, in any dimension as long as the disorder is very strong. 
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The paper is organised as follows: in section 2 we discuss the quantum disordered 
system and its isomorphic classical analogue in one dimension. We exploit the existence 
of an exact mapping between the two problems which defines relationships between the 
long-time classical properties and the small-lE( quantum behaviour [3, 111. The two 
cases of off-diagonal disorder are distinguished. We introduce the family of generalised 
Lyapunov exponents [12,13] and discuss the basic quantities of interest near the band 
centre. The differences between the two models are clarified. In section 3 we present 
our approach for tackling higher-dimensional quantum problems. A suitable tri- 
diagonalisation transformation of a higher-dimensional problem to a semi-infinite one- 
dimensional chain is outlined. The mapping is exact but the chain obtained is inhomo- 
geneously disordered, that is the variance of the bond randomness decays along the 
chain. We can test our expectation that strong disorder maps onto an ordinary disordered 
chain (i.e. with constant variance along the chain) so that the Dyson singular behaviour 
is eventually recovered. We present numerical results for d = 2 , 3  which indicate the 
limits of such behaviour. Results for the density of states for weak disorder are also 
shown, for a comparison with a previous qualitative theory [ 141, large-n expansions [15] 
and numerical results [ 161, Finally we summarise our approach and discuss our results 
in connection with other sources of l/f noise. 

2. One dimension 

Firstly, we discuss the electronic tight-binding Hamiltonian with off-diagonal disorder 
in a one-dimensional bipartite lattice. The stationary difference equation is 

where n covers all lattice sites. E is the energy eigenvalue, Y, denotes the wavefunction 
component at the nth lattice site and V, are the independent random off-diagonal matrix 
elements. For the case of uncorrelated disorder In V, is independently distributed with 
zero mean and given variance 02. We consider first the case of correlated disorder. This 
is often referred to as the case with spin wave symmetry [3], the V, are random but they 
occur in pairs, that is V2, = V2n+l. Then if we eliminate odd sites in equation (1) we 
arrive at a new equation for the even sites, which is 

VZ(n-1)y*(n-1) + Viny2(n+1) = ( E 2  - V$n-l, - VL)y2n*  (2) 

Equation (2) reduces to the basic amplitude equation describing a single magnon in a 
linear ferromagnetic Heisenberg chain if E = E2, J ,  = V & ,  9, = Y2, then 

where J,, denotes the exchange interaction between spins at sites n and n + 1. Therefore 
the long wavelength behaviour of the excitations should be exactly identified from the 
correlated disorder model near the band centre. Equation (3) may be viewed as the 
Laplace transform of a corresponding Master equation describing classical diffusion 
with symmetric probabilities (equal to 1) for left and right moves. For the random- 
random-walk problem the probabilities for left and right movements are random num- 
bers chosen from a flat distribution in (0 ,  1). Its quantum analogue is described by 



2956 S N Evangelou 

equation (1) with a choice of independent, random and uncorrelated V,. The classical 
discrete time model is described by 

Pn - 1 P n  - I(?> + q n  + 1 P n  + ~ ( t )  = Pn(t + 1) (4) 
where P,(t) is the probability that the particle is on site n at time t and p,, q, = 1 - p, 
are the hopping probabilities to sites n + 1 and n - 1 with (ln(pdq,)) = 0. The equation 

dPn/dt= Tn,n-lPn-l+ Tn,n+lPn+l -(Tn-I,n + Tn+l,n)Pn (5 1 
describes a continuous time hopping model instead. P, is the probability for being at site 
n ,  and T,,and T,,,,are theprobabilitiesforthetransitionsn+mandm-n, respectively. 
It can be shown that equation (5) is isomorphic to the Anderson model under certain 
conditions [ 111. 

The averaged density of states and the localisation length near the band centre were 
obtained in [3] by a combination of perturbation theory and a scaling assumption. These 
results permitted a clear difference for the two cases of disorder to be established. For 
the non-correlated model the average density of states diverges as 

M E ) )  K ~~l ln -~ /EI l / lE l  as IEl+ 0, (6) 
which is the well known Dyson result [17]. For the correlated model (equation (3)) the 
dependence on the energy is identical to that of the pure chain if the disorder is not too 
strong. This behaviour explains the pure long-wavelength magnon density of states 
( ( P ( E ) )  cc E - ~ / ~ )  often observed in low-dimensional random magnets. The pure disper- 
sion law E a Dk2 is satisfied, where D is the spin wave stiffness which is proportional to 
(l/.l)-l (see [3]). In the case of very strong disorder, for example, when (l/J) = w, the 
corresponding behaviour is described by non-universal power laws which depend on 
the choice of distribution for the bond strengths [3]. For the electronic problem the 
localisation length diverges at I El = 0 as a power law and logarithmically for the cor- 
related and non-correlated models, respectively. However, extended states may appear 
in the band centre only in the former case while in the latter a typical wavefunction 
decays as exp( -constant x VN) instead. Interesting analogies exist between this result 
and the first-passage time in random-random walks [MI. 

In order to make transparent the differences in the localisation properties of the two 
electronic models we introduce the family of localisation lengths as suggested in [12]: 

where 

y = = lim(1/n)(ln~Yn I )  
n-t  = 

is the usual inverse localisation length. At E = 0 the transfer matrices derived from 
equation (1) commute and the problem is easy. If we assume that /Yol = 1 we may 
estimate a quantity of interest which is the response at the 2Nth site. In fact, we want to 
study its distribution properties. From equation (1) we obtain: 

N 

In the correlated case the summation in equation (8) is trivially zero, all 5;' = 0 and the 
state is extended. In the uncorrelated case if In V, is normally distributed with zero mean 
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and u2 variance the sum in equation (8) has zero mean and 2Na2 variance. This leads to 
y = 0. If we make the cumulant expansion 

(In I Y 2 N  I q >  = q(ln I Y 2 N  I) + (q2/2)[((ln l Y 2 N  112> - (In IY2N I >21 + 0 ( q 3  (9) 
we can easily evaluate the rest of the localisation lengths. We obtain a linear relation on 
q for the growth rate for the moments of lY2NI, that is 

= (a2/2)4 (10) 
due to the Gaussian distribution of lnIY2N/ which makes only the q2 term survive in 
the expansion (9). In this case we have for the generalised Lyapunov exponent 
L(q) = : 

U q )  = Y4 + (p/2)q2 (11) 
that is a parabolic law, with y = 0 and p = u2. The y and p denote the mean and the 
variance for the asymptotic value of (1/2N)lnIY2,,I. In terms of the multifractal theory 
[13] it appears convenient to use, instead of L(q),  its Legendre transform h(a). From 
equation (11) h(a) takes again the simple parabolic form 

h(a)  = L(1) - (1/2u2)a2 (12) 
with a ranging from --c13 to + 30, h( * U') = 0 and the maximum is h(0) = la2. We can 
observe that although y is identically zero the state is not extended because the rest of 
E ; ' ,  for all q # 0, are different from zero. A hierarchy of (related in this case) decay 
properties for the wavefunction exists which is similar to the multifractal singularities. 
A typical decay of the wavefunction amplitude is slower than exponential and the state 
is weakly localised. This result should be compared with super-localisation [l] ,  where a 
decay faster than exponential occurs and f;' = 

We now return to the case of E # 0 where the transfer matrices do not commute. 
The results of [4] for the non-correlated case give for the Lyapunov exponent for small 

for all q. 

IEI 

Y E  a2/1ln(W2)I  (13) 
and for ( p ( E ) )  the Dyson singularity of equation (6 )  [17]. The 5;' should also exhibit 
similar scaling laws as a function of E and u2. Equations (13) and ( 6 )  were numerically 
verified for all kinds of disorder in [ 191, We have also investigated numerically the value 
of p from equation (11). We find a linear dependence of p on u2 as at 1 E /  = 0, while p is 
almost independent of I El. It is highly improbable that this case will differ from the 
normal expectation that for one-dimensional disordered systems, at least for a bounded 
disordered potential, the log-normal distribution is appropriate to describe local quanti- 
ties, including IY2NI [B]. Therefore the non-Gaussian fluctuation effects for the log 
observed in [13] for weak disorder in one dimension are not generally met here. They 
imply higher-order terms in equation (9) and deviations from log-normal behaviour 
with a set of many unrelated scaling exponents. It should be stressed that our results 
concern the strongly localised regime and the limit of infinite size is taken. It is therefore 
obvious that a finite-variance p or even the non-Gaussian terms in equation (9) will 
not affect the factor l / v N  for the relative mean square root variance 6 y / y  and the 
localisation length is a self-averaging quantity in one dimension as expected from 
general theorems [l]. Of course, this is no longer true when the system size N becomes 
comparable or less than go. The mesoscopic fluctuations become important in this regime 
and 6 y / y  is of order one [B]. 
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We have also considered the weakly disordered case, where the Dyson singularity 
should not appear until the energy is very close to zero. It is possible to obtain upper 
bounds for y ,  which also serve as rough estimates, by using the fact that (In x )  S In ( x ) .  
This implies that y s 3 In A,,,, where Amax is the largest, in absolute value, eigenvalue 
of the averaged 4 x 4 direct product of the transfer matrices. We obtain for uncorrelated 
weak off-diagonal disorder y 6 o2 (1 + SE2) which can be compared with the known 
result for weak diagonal disorder U& [20]. At the band centre this defines the scaling 
relationship o2 = io’, between off-diagonal and diagonal disorder which holds gener- 
ally. 

3. Higher dimensions, results for d = 2 ,3  

The l/f spectrum of fluctuations should persist in two and higher dimensions only if 
logarithmic diffusion occurs. However, it is believed that this is the case only when the 
random potential, to whom the random force is a gradient, has long-range correlations. 
A random-random-walk model was introduced in [4] in the case where the random force 
is not a gradient but has short-range correlation. A square lattice was considered in two 
dimensions and the transition probability from a site to its nearest neighbours was taken 
as the Kth power of a random number chosen from a flat probability distribution on 
the interval (0 , l ) .  Each probability was subsequently normalised so that the sum of 
probabilities starting from a given site was one. K measures the degree of correlation, 
for example, if K = 0 all probabilities are equal to a quarter for the square lattice and 
the standard (symmetric) random walk is obtained. Then the power spectral density is 
S(f) CC l/f2 and the particle diffuses freely. K = leads to trapping. In this case the 
noise becomes white (S(f) is constant), that is uncorrelated from site to site. For 
intermediate values of K a variety of different behaviours was obtained [4] at long times 
ranging from power-law diffusion, for small K ,  to logarithmic Sinai diffusion for larger 
values of K. In the latter case colouring of the noise is observed and l/f noise in 
two dimensions. Although we cannot exactly connect the behaviour of the classical 
excitations and diffusion to a specific tight-binding Hamiltonian, as we have done in one 
dimension, the basic analogies between classical diffusion at long times and the low-1 El 
behaviour for the quantum problem should not be affected. In the rest of the paper we 
consider the higher-dimensional quantum analogue of the classical problem, which is a 
tight-binding Hamiltonian with non-correlated off-diagonal disorder in d = 2 , 3  

The quantum Hamiltonian with off-diagonal disorder is given by 

where the Vnnt are random and the sum extends to all nearest-neighbour pairs of lattice 
sites (n ,  n r )  in a d-dimensional hypercubic lattice. Due to the two-sublattice structure of 
the Hamiltonian of equation (14) the averaged density of states is symmetric around 
E = 0, that is p ( E )  = p(-E). In the absence of disorder the well known Van Hove 
logarithmic singularity exists in d = 2 and no singularity is present in d = 3 [21]. For the 
disordered problem the singular behaviour which was found in one dimension persists, 
at least in two dimensions. For weak off-diagonal disorder in two dimensions numerical 
evidence for a sharper than log power-law singularity, that is 

was obtained [19]. The numerical value for the exponent was q = 0.31 2 0.02 [19]. This 
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should be contrasted with the power law (x2(t)) cc ? c  as l -+  w, with I;  = 0.30 t 0.09, 
obtained for the two-dimensional classical problem for not too large values of K. It is no 
longer possible to relate exactly the obtained subdiffusive behaviour to the magnon 
density of states as E -+ 0. However, it is probable that the nearly equal estimates for the 
exponents Q, or (may also describe the low-& magnon density of states in two dimensions 
[22]. In the case of very strong off-diagonal disorder the singularity was of a different 
nature and approached 1/(El [19] in agreement with the logarithmic diffusion [4] 
obtained for large K .  It is argued that the Dyson singularity should be recovered 
asymptotically in two dimensions and the desired l/f behaviour obtained. For cubic 
lattices no singularity is believed to exist for weak disorder [14-161. However, for very 
strong off-diagonal disorder we again expect the 1/1 El behaviour. 

In order to discuss the two- and three-dimensional lattices the tridiagonalisation 
scheme is proposed, of reducing a Hamiltonian describing a higher than one-dimensional 
lattice to a semi-infinite linear chain [14]. This can generally be achieved for any Her- 
mitian operator H defined on a Hilbert space which consists of the site basis set. Given 
a normalised starting vector 11) E Zd for a particle at a given site operating successively 
on 11) with H ,  we construct a new sequence of orthogonalised vectors In), n = 2, to N 
via the recursion relation 

b,  In) = ( H  - a,) In - 1) - b,-l ( n  - 2). (16) 
The In) are linear combinations of the original basis set and constitute a representation 
of H in the new basis set. They define a tridiagonal matrix where a, are the diagonal and 
b, the off-diagonal matrix elements. It should be stated that the order of the tridiagonal 
matrix Ncounts the number of shells in the lattice starting from site 11). This method is 
particularly suitable for the evaluation of averaged local densities of states. For the 
regular d-dimensional lattice a, = 0 for all n and the b, converge to d for n % 1. For 
our H (equation (14)), which has only off-diagonal matrix elements a,  = 0 for all n. 
Therefore, a Hamiltonian with off-diagonal disorder in any dimension should map 
exactly onto a semi-infinite chain with random hopping elements b,. Equivalently this 
would imply that the one-dimensional results should carry through to higher dimensions. 
However, the chain obtained is not homogeneously disordered, and the b, are random 
variables with variance U’, decaying along the chain as n-2a with a > 0. If a = 0 the 
disorder is homogeneous and the well known one-dimensional results should remain 
valid in any dimension. We argue that this is the case for very strongly disordered systems 
in any dimension. But even if a is non-zero the higher-dimensional system can still be 
considered from the study of a specific one-dimensional model with decreasing disorder. 
This has already been done [ l ,  231 for a related model with identically distributed 
random-site energies with decaying variance described by an exponent a. The case of 
a = B (i.e. ai a n-’) is related to models of localisation in the presence of an electric 
field [ 11 where a transition from power-law localisation to a singular continuous spectrum 
was shown to occur for a critical value of the strength of the b,. For a > B extended states 
should appear. 

From the previous discussion it is clear that in order to estimate the spectral and 
localisation properties of the model of equation (14) we should know how the statistics 
of the coefficients b, behaves as a function of n. We evaluated the b, taking into account 
lattices with 20201 sites in d = 2 and 37881 in d = 3. They correspond to 101 iterations 
of equation (16) in d = 2 and 31 iterations in d = 3. The calculations were performed 
using a statistical ensemble which consisted of more than 500 samples. The mean and 
variance of b, for a given n were computed for various disorder distributions. The results 
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Figure 1. The variance 4 characterising the dis- 
tribution of the b, (equation (14)) is shown for 
weak off-diagonal disorder plotted against the 
shell index n for squared (d  = 2) and cubic (d  = 
3) lattices. The off-diagonal matrixelements Vare 
random variables chosen from a flat probability 
distribution with zero mean and width of a half. 
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Figure 2. The same as in figure 1 but for strong off- 
diagonal disorder. The value which characterises 
the degree of disorder is given by the variance of 
the box distribution for In V, U* = 16.0. It can be 
seen now that the variance U: for the distribution 
of the b,, as a function of II, does not decay so 
rapidly. For even higher values of U* the homo- 
geneous disorder limit should be reached and the 
b, become independent. 

obtained are shown in figures 1 and 2. The (6,) always converge slowly and their variance 
decays as a function of n. In figure 1 we plot oi , the variance of b,, against the shell index 
n for weak disorder in a double-log plot. The observed decay could be approximately 
fitted to a power law with an exponent a = f in d = 2 and a around 1 for d = 3 .  These 
results are half the values of those obtained with a = S(d - 1) which is an estimate for 
very weak disorder based on simple structural arguments [14] (the number of sites at the 
nth shell is proportional to nd-l). They can be interpreted as evidence for localisation in 
d = 2 ,  even for weak disorder. Extended states and ordinary diffusion for the classical 
problem may occur only for d = 3 when a = 4. For strong disorder we find that the 
variances do not decay as rapidly. In figure 2 we show our results in d = 2 , 3  for some 
reasonably large values of disorder. The trend of the data is to become independent of 
IZ and this is found to be enhanced for even larger values of disorder. If we consider a 
plotted against o2 we observe a rather sharp decay in both d = 2 , 3  and for large o* the 
value of a = 0 should be recovered asymptotically. Therefore, the known results from 
section 2 should, asymptotically, describe the properties of strongly disordered systems 
in any dimension. We should remark that the strengths of the disorder o2 required for 
the one-dimensional description to be valid (a = 0) may be unrealistically large to 
account for real cases. Of course, the higher the dimension the more disordered the 
system needs to be in order to make the one-dimensional description valid. To conclude, 
for very strong disorder the one-dimensional behaviour sets in and the 1/1 El singularity 
eventually arises. 

I 
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Figure 3. Plot of the averaged normalised density of states (p(E))  in histogram form in three 
dimensions for two values of the uncorrelated strong off-diagonal disorder: (a )  uz = 4.0; (b) ,  
U2 = 8.0. 

We have also studied this problem via independent means. We computed the aver- 
aged integrated density of states N ( E )  for (El close to zero in two and three dimensions. 
We apply a very efficient numerical method [ 191 which makes use of eigenvalue counting 
algorithms. The results are displayed in figures 3(a) and (b)  for strong off-diagonal 
disorder in d = 3. The histograms of the averaged density of states are convincing for 
the existence of a l/JEl-type of behaviour even in three dimensions. In figure 4 we have 
plotted [ N ( E )  - 0.5]-'/* against l/lEl for two reasonably strong values of disorder. For 
the Dyson singularity to appear N ( E )  should be logarithmically dependent on (El. We 
find that for energies close to IE( = 0 the behaviour is close to being logarithmic, but it 
is rather difficult to ensure this when the asymptotic limit is reached. 

Finally, we have considered a question which arises naturally in the context of weak 
off-diagonal disorder [16, 191. It concerns the upper critical dimension for the existence 
of the singularity of ( p ( E ) )  at the band centre. Of course, for strong disorder from the 
present paper it can be concluded that the upper critical dimension should be infinite. 
From weak-disorder loop expansions [15,16] it is suggested that it is two. In d = 3 only 
a square root law describes @(E)) and no singularity was predicted. We present results 
for weak disorder in three dimensions in figure 5. The square root law is certainly valid, 
but only for (El not too close to zero. A similar situation to the two-dimensional case 
[19] may occur here where a crossover from the logarithmic to the power-law divergence 
of equation (15) is seen by lowering lEl. In d = 3 very close to JEl = 0 higher-order 
powers of (El become important. We should remark here that it is very difficult to 
distinguish numerically between very small power laws and logarithmic behaviour but, 
within reasonable limits, the results obtained in this section allow some definite con- 
clusions to be drawn. Our results do not favour the interpretation of [24] concerning the 
conclusions reached in [4] as due to the special choice for the distribution of hopping 
probabilities. The conjecture of [24] concerning ordinary diffusive behaviour in all 
dimensions is clearly ruled out on the basis of the present results, at least when the 
disorder is strong. 

4. Conclusions 

We have shown that Anderson localisation provides a new mechanism for l/f noise 
which can be displayed in the form of a Dyson spectral singularity. The Dyson result is 
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Figure 4. Integrated density of states plotted as 
[ N ( E )  - 0.5]-'" against 1/lEl on a semi-log- 
arithmic graph for three dimensional 
20 x 20 x 50 lattices. The data are collected for 
rather strong off-diagonal disorder (aZ = 4.0 and 
8.0). The Dyson result from equation (4) should 
be indicated by an asymptotically straight line for 
large 1/lEl. 

- 2 0 .4  
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Log ( 111 E I )  
Figure 5. Integrated density of states 
[ N ( E )  - 0.5]/lEl plotted against IEI in a semi- 
logarithmic graph for the three-dimensional cubic 
lattice of size 20 X 20 X 50. The disorder for the 
Vis Gaussian with mean zero and variance of one 
sixth. Two types of behaviour are distinguished: 
for not too small IEl (on the left-hand side of the 
figure) the density of states is @(E))  = 
co - c , v \ /E l  + O( IE)),  forexample, see [16]. For 
the smaller-lEl region higher-order terms in I El 
become important. 

simply a manifestation of localisation and the strong sample-to-sample fluctuations in 
the disordered electronic system and relies on the underlying validity of the log-normal 
distribution. In the insulating state most ensemble distributions are, indeed, log- 
arithmically normal [8]. They arise because of the inherent multiplicative random 
processes (transfer matrix products) in the random ensemble. It can be shown that log- 
normal distributions always lead to l/f noise. The real and imaginary parts of the 
averaged Green function G give the Lyapunov exponent y and the averaged integrated 
density of states N ( E ) ,  respectively. The strongest possible singularity which is com- 
patible with the integrability of G is a 1/1 E (  singularity. For weaker off-diagonal disorder 
or correlated disorder different forms of spectral singularities are expected instead. No 
l/f noise then occurs in the classical analogue. 

In this paper we considered a microscopic model of disorder which permits the direct 
evaluation of its spectral properties and a distinction between weak and strong disorder 
in any dimension to be made. We are able to link the small-lEl quantum behaviour with 
the long-time dynamics of models for classical evolution in a random environment and 
excitation problems. Therefore, a lot of work which has been done in the context of 
probability theory carries over to quantum problems. For one-dimensional classical 
problems it is known that anomalous diffusion is usually expected expressed in terms of 
power laws. For the marginal asymmetric case the Sinai model [5]  becomes appropriate, 
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where after a long time t the particle has travelled a mean squared distance proportional 
only to ln4t. These problems require the study of distributions rather than simple 
averages. For the quantum problem the generalised Lyapunov exponents are defined in 
terms of the averaged moments of the wavefunction. The 1/IE( singularity is the effect 
of the second cumulant which is the variance of the logarithmic response in equation 
(9). This is due to the fact that the underlying distributions are log-normal. For weaker 
disorder the scaling properties of higher-order cumulants must be considered to be often 
described by an infinite hierarchy of non-related multifractal exponents [12, 13,251. 

In summary, flicker noise and Dyson singularities are closely related. They are both 
due to untypical events in the statistical ensemble which dominate over the mean values. 
They should occur for very strong values of disorder, independently of dimension, when 
the medium is random enough so that it is rich in rare events. The underlying mechanism 
of this behaviour is the log-normal distribution. These distributions are familiar from 
relaxational dynamics in complex systems, such as glasses and spin glasses, where l/f 
phenomena are also common [4,7]. The mechanism of noise is similar to that in the 
present study but clearly different from l/f noise due to the phase space structure in the 
transition to classical chaos. It should be further stressed that although we studied a 
specific model the underlying logarithmic-normal fluctuations are independent of the 
kind of disorder. The choice of the model just enables an easy and explicit demonstration 
of the phenomenon. Many questions in this area still remain mostly concerning the 
nature of the crossover from power law to Dyson behaviour. In that case the known 
difficulties [8] with scaling at the Anderson transition may arise. In this paper it is shown 
that for strong disorder scaling exists and only two parameters are sufficient. Moreover, 
it should be possible to detect the phenomena dealt with in this paper in experimental 
studies of fluctuations in insulators. The Hamiltonian with off-diagonal disorder may 
also serve as a model for current noise in discontinuous metallic films and even flicker 
noise in biological membranes. 

Acknowledgments 

This work was partially supported by a I'IENEA research grant from the Greek Sec- 
retariat of Research and Technology. I should also like to thank DAAD for financial 
support during a study trip to PTB at Braunschweig, and T Ziman and G Theodorou for 
stimulating discussions. 

References 

[l] Souillard B 1986 Chance and Matter ( N A T O  A S I ,  ~0146)  ed J Souletie, J Vannimenous and R Stora 

[2] Mott N F and Twose W D 1961 A d u .  Pbys. 10 107 
[3] Ziman T A L 1982 Pbys. Reu. Lett. 49 337 
[4] Marinari E,  Parisi G, Ruelle D and Windey P 1983 Phys. Reu. Lett. 50 1223 
[SI Sinai Ya G 1982 Tbeor. Prob. App l .  27 247 
[6] Weissman M B 1980 Reu. Mod .  Pbys. 60 537 
[7] Marinari E, Paladin G, Parisi G and Vulpiani A 1983 J .  Pbys. A :  Math. Pbys. 184 
[8] Altshuler B L, Kravtsov V E and Lerner I V 1989 Pbys. Lett. 134A 488 
[9] Pendry J B, Kirkhman P D and Castano E 1986 Pbys. Reu. Lett. 57 2983 

(Amsterdam: North-Holland) p 305 

[IO] Pendry J B 1988 I B M J .  Res. Deu. 32 137 



2964 S N Evangelou 

[ l l ]  Schneider T 1986 Fluctuations and Stochastic Phenomena in Condensed Matter Physics ed L Garrido 
(Berlin: Springer) p 199 

See also Schneider T, Sorensen M P, Tossati E and Zannetti M 1986 Europhys. Lett. 2 167 
[12] Paladin G and Vulpiani A 1987 Phys. Rev. B 35 2015 
[13] Paladin G and Vulpiani A 1989 Phys. Rep. 156 147-225 
[14] Ziman T A L 1982 Phys. Rev. B 26 7066 
[15] Oppernmann Rand Wegner F 1979 Z. Phys. B 34 327 
[16] Grzonka R P and Moore M A 1982 J .  Phys. C: Solid State Phys. 15 5393 
[17] Dyson F J 1953 Phys. Rev. 92 1331 
[18] Noskowicz S H and Goldhirsch I 1988 Phys. Rev. Lett. 61 500 
[ 191 Evangelou S N 1986 J .  Phys. C: Solid State Phys. 19 4291 
[20] Bouchaoud J P, Georges A, Hansel D, LeDoussal P and Maillard J M 1986 J .  Phys. A: Math. Phys. 19 

[21] Economou E N 1983 Green Functions in Quantum Physics (Springer Tracts in Modern Physics 7) (Berlin: 

[22] Evangelou S N 1986 Phys. Rev. B 33 3602 
[23] Haynand Rand John W 1984 Phys. Status Solidi 126 335 
[24] Fisher D S 1984 Phys. Rev. A 30 960 
[25] Evangelou S N 1988 Disordered Systems and New Materials ed M Borissov, N Kirov and A Vavrek 

L1145 

Springer) 

(Singapore: World Scientific) pp 783-805 


